
Recurrent Conditional Generative Adversarial Networks for
Autonomous Driving Sensor Modelling

Henrik Arnelid∗ 1, Edvin Listo Zec∗ 1, Nasser Mohammadiha3

Abstract— Simulation of the real world is a widely researched
topic in various fields. The automotive industry in particular is
very dependent on real world simulations, since these simula-
tions are needed in order to prove the safety of advance driver
assistance systems (ADAS) and autonomous driving (AD). In
this paper we propose a deep learning based model for simu-
lating the outputs from production sensors used in autonomous
vehicles. We introduce an improved Recurrent Conditional
Generative Adversarial Network (RC-GAN) consisting of Re-
current Neural Networks (RNNs) that use Long Short-Term
Memory (LSTM) in both the generator and the discriminator
networks in order to generate production sensor errors that
exhibit long-term temporal correlations. The network is trained
in a sequence-to-sequence fashion where we condition the
output from the model on sequences describing the surrounding
environment. This enables the model to capture spatial and
temporal dependencies, and the model is used to generate
synthetic time series describing the errors in a production
sensor which can be used for more realistic simulations. The
model is trained on a data set collected from real roads with
various traffic settings, and yields significantly better results as
compared to previous works.

I. INTRODUCTION

A lot of progress is continuously being made in the race to
autonomy in the automotive industry. Many advance driver
assistance system (ADAS) technologies, such as lane keeping
assist, collision warning and emergency braking are already
implemented in vehicles today and are foreseen to reduce the
risk of accidents on roads. In order to make a safe decision,
the vehicles are installed with a lot of different sensors such
as cameras, radars and lidars. The sensor data is often fused
in order for the vehicle to have as much information as
possible of its surrounding 360 degree environment.

In order to guarantee the safety of the autonomous vehicles
with a certain confidence, billions of miles have to be driven
in order to provide a good statistic for a low fatality rate
[1]. This is a very time consuming and expensive task which
cannot be done in reality. Companies developing software for
ADAS and autonomous driving (AD) thus resort to virtual
verification, where models of the environment and sensors
are made to match reality. Modelling a sensor can be done
in many different ways on different levels. For example, it
is possible to model the raw detections of a sensor. In this

*These authors contributed equally to this paper.
1Henrik Arnelid is with Zenuity AB, Gothenburg, Sweden

henrik.arnelid@zenuity.com
1Edvin Listo Zec is with RISE AI. Edvin was with Zenuity AB

when the main work was performed, and was continued at RISE.
edvin.listo.zec@ri.se

3Nasser Mohammadiha is with Zenuity AB, Gothenburg, Sweden
nasser.mohammadiha@zenuity.com

paper we focus on object level data, which is the output
of sensor fusion. Modelling sensor characteristics such as
sensor errors is a challenging problem because it requires
models that can capture stochastic behaviours of sensors.
Furthermore, it is important to understand how the errors
correlate with different traffic scenarios and settings.

Generative models are a fundamental part in a lot of
different machine learning algorithms and the attention to
generative models is increasing, a lot due to their capability
of modelling underlying statistical structures of high dimen-
sional signals. Especially in computer vision, Generative
Adversarial Networks (GANs) [2] have had great success
recently generating realistic high-quality images. Inspired
from this, in this paper we develop a deep learning based
sensor model capable of modelling the continuous sequential
data describing errors in sensor outputs using adversarial
networks. Two main properties of sensor errors are temporal
correlations and dependencies on other parameters [3]. To
capture these properties, we use a continuous-valued con-
ditional GAN where we condition the output of the model
with input features as well as introducing Recurrent Neural
Networks in both the generator and the discriminator.

The main contribution in this paper is an improved version
of the recurrent and conditional Generative Adversarial Net-
work [4] which we implement in order to model sensors used
in autonomous vehicles. In this paper, the model is applied
to an ADAS and AD sensor, however it can be used for any
type of real-valued signal.

II. RELATED WORK

The work in this paper is related to previous works
on sensor modelling and also to Generative Adversarial
Networks and Recurrent Neural Networks for sequence
generation and prediction. Since the introduction of GANs,
they have shown good results in generating realistic samples
in many different applications [5], [6], [7], where tasks
involving images are predominant. However, GANs have
not been explored as extensively to generate synthetic time
series. GANs have previously been used for sequential data
generation, but these typically focus on discrete outputs such
as in language processing [8]. The amount of research for
generating continuous real-valued time series using GANs
is limited as compared to image generation. In [4], [9],
[10] the authors use RNN based GANs in order to model
continuous time series. In [11] they modify already existing
image generation methods to operate on audio waveforms,
which is a different approach than using GANs for modelling
multivariate time series.

An Autoregressive Input-Output Hidden Markov Model
(AIO-HMM) for generation of real-valued time series de-
scribing sensor errors has recently been proposed in [3].
Given input features describing the environment, the authors
managed to generate time series of sensor errors similar
to that exhibited by a production sensor. Given the recent
success of GANs in the image domain, we extend upon the
idea of the AIO-HMM and show that it is possible to improve
the realism of the generated time series with a improved
version of the RC-GAN as described in [4].

A. Problem Overview and Data Set

The output from sensors used in ADAS and AD consid-
ered in this paper is in the form of dynamic state vectors over
time, describing variables such as object position, velocity
and acceleration relative to the host vehicle collecting the
sensor data. These outputs from production sensors inher-
ently exhibit noise and inaccuracies. The main contribution
in this paper is to create a model for generating synthetic
but realistic production sensor outputs. Particularly, we focus
on modelling the time series describing the longitudinal
and lateral position and velocity errors from the sensors.
A trained model can then be used in Computer Aided
Engineering (CAE) tools for virtual testing.

In the same fashion as in [3], we use a radar and camera
fusion based production sensor setup in our experiments.
Moreover, the ego vehicle is also equipped with a Velodyne
lidar HDL-64E which is used as a reference system. The
lidar data is processed using object classification and tracking
algorithms and the output is in the form of object lists
with estimated properties like position and speed. We define
the production sensor error as the difference between the
production sensor and the reference sensor outputs for every
detected object over time. Let x∗ be multi-dimensional
sequences describing sensor outputs, such as position and
speed for target objects. For a given sequence x that we
want to model, the error over time t is defined as

ε(t) = xsensor(t)− xreference(t). (1)

In order to calculate the error we need to associate each pro-
duction sensor object with a corresponding reference system
object. We do this by using an offline matching algorithm
[12], where tracked objects are represented with a dynamic
state vector with the objects position, speed, acceleration,
width etc. The output from the matching algorithm is a
matrix consisting of object properties. These properties are in
the form of time series for each uniquely tracked object, both
from the reference system and the production sensor. The
data set that we use consists of sensor outputs collected from
four days of driving on European highways and trunk roads,
spanning over 12,000 multivariate time series, describing
variables such as position, speed, heading etc. The validation
data set contains around 2,000 multivariate time series. The
average length of all time series is 197 frames with a
minimum of 50 and maximum of 828 frames. In order to
enrich the scenario space of the data set, different type of

vehicle scenarios such as cut-ins, overtakes and trailings are
present in the data set.

III. PROPOSED MODEL

A. Recurrent Neural Networks

The vanilla RNN is a non-linear mapping f which takes a
vector sequence x = (x1,x2, . . . ,xT) as input and outputs
a high-level representation sequence h = (h1,h2, . . . ,hT)
[13]. The equations describing the mapping are

ht = f(Wxt +Hht−1 + b),

pt = softmax(W pht + bp),
(2)

where W ,H, b,W p, bp are learnable parameters of the
network, and pt is the softmax probability of having seen
the observations up to xt.

B. Long Short-Term Memory Units

A drawback of using vanilla RNNs that are trained with
gradient descent methods is the vanishing gradient prob-
lem where the gradients corresponding to past observations
become vanishingly small and weights do not get updated
properly. One solution to this problem is the Long Short-
Term Memory network which incorporates a memory cell
c together with an input gate i, an output gate o and a
forget gate f [14]. The memory cell enables the network
to remember its state over time, and by doing so it is
possible for the full network to capture long-term temporal
dependencies present in the training data. Let � be the
Hadamard product, σ an activation function and tanh(·) be
applied element-wise. The computational flow of an LSTM
is then as follows:

it = σ(W ixt +U iht−1 + V ict−1 + bi) (3)
f t = σ(W fxt +Ufht−1 + V fct−1 + bf) (4)
ct = f t � ct−1 + it � tanh(W cxt +U cht−1 + bc) (5)
ot = σ(W oxt +Uoht−1 + V oct + bo) (6)
ht = ot � tanh(ct), (7)

where W ∗,V ∗,U∗ and b∗ are learnable parameters. In
Equations (3) and (4) the input and the forget gate are
computed, which are then used to update the memory cell
c in Equation (5). Then the output gate is computed in
Equation (6), and lastly the final output ht is computed in
Equation (7).

C. Generative Adversarial Networks

A Generative Adversarial Network is a generative neural
network that aims to generate samples given a distribution
pdata(x) of the training data. In the GAN architecture there
are two different neural networks trained simultaneously, a
generator G(z;θg) and a discriminator D(x;θd), which have
conflicting objectives. The generator learns a distribution pg
over the data x, whereas the goal of the discriminator is to
discriminate between the synthetic data G(z) generated by

G and the real data x. In practice, this is a minimax game
problem described with the value function V (D,G) as

min
G

max
D

V (D,G) =min
G

max
D

Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))].
(8)

Here, we have defined a prior distribution pz(z) over the
input noise variables. It has been shown that the minimax
game has a global optimum for pg = pdata [2].

D. Recurrent Conditional Generative Adversarial Networks

The model implemented in this paper is based on the
networks described in [4]. The first difference from the
original GAN that the authors propose in their paper is that
both the generator and discriminator are replaced by RNNs
with LSTM units. The second change is that the output from
both the generator and the discriminator is conditioned on an
input vector y, which makes it possible for the GAN to learn
the conditional probability distribution p(x|y) as described
in [2]. The value function is then expressed as

V (G,D) =Ex∼pdata(x|y)[logD(x|y)]+ (9)
Ez∼pz(z|y)[log(1−D(G(z|y)|y))].

Figure 1 depicts the network architecture. In the same
manner as with the original GAN, the generator takes a
latent vector z sampled from a known distribution as input.
Furthermore, the discriminator takes either a real or synthetic
sequence as input where the network outputs a softmax
probability at each time step classifying if the sample is real
or synthetic. All predictions for each time step are then used
to calculate the loss function. Finally, both G and D are
conditioned on a multi-dimensional real-valued sequence y.
In our case, we use real-valued sequences for the output,
input and the latent space denoted by

X = {x1,x2, . . . ,xT } (10)
Y = {y1,y2, . . . ,yT } (11)
Z = {z1, z2, . . . ,zT }, (12)

where xt ∈ RTt×k, yt ∈ RTt×`, and zt ∈ RTt×m where Tt
is the length of the series for t = 1, 2, . . . , T and k, ` and m
are the feature dimensions.

One main change in our model as compared to [4] is that
we isolate the latent noise to its own RNN. In our case, the
generator consists of two sets of RNNs. One RNN that the
latent vector zt is fed to, and one that the conditional input
is fed to.

(a) Generator network (G). It takes input from a latent space as well
as condition data yt at each time frame.

(b) Discriminator network (D). It takes either a real or synthetic
time series together with the condition data yt as input at each time
frame.

Fig. 1: The architecture of the generator (top) and discrimi-
nator (bottom). Figure is a modified version as seen in [4].

Another change in our model is that we add a skip-
connection in both the generator and the discriminator. This
allows the networks to predict from both memory and
information of the current time-step. The output from both
RNNs within and the skip-connected conditional input in
G are concatenated and fed into a fully connected layer
and the final output is a linear activation. By isolating zt
it is possible to control the amount of noise that is applied
to the output in much greater detail through varying the
distribution that zt is sampled from, the network size and the
size of zt. The discriminator has a simple structure where
the data point(s) from either a real or synthetic time series
xt is being concatenated with the corresponding condition
data yt at each time frame and is fed to a deep RNN. By
adding the skip connection for yt to the fully connected
layer for both networks, a more stable and faster learning
was obtained during the training. The final model used in
this paper consisted of a 2 layered RNN-LSTM in both the
generator and the discriminator. The full model architecture
proposed in this paper is visualised in Figure 2.

(a) The generator takes a sample zt from the latent
space which is passed to a single layered RNN, while
the condition data yt is fed to a multi-layered RNN.
The output from both RNNs and the skip-connected
condition data are all concatenated and fed into a
fully connected layer and the final output is a linear
activation.

(b) The discriminator takes a sample xt from a time
series, real or fake, together with the condition data
yt. These two inputs are concatenated and passed to
a multi-layered RNN whose output goes into a fully
connected layer together with the skip-connected
condition data. Finally there is one output neuron
to classify the specific sample.

Fig. 2: Internal structure of the generator (top) and discrim-
inator (bottom).

IV. MODEL EVALUATION

Evaluation of generative models in general and GANs in
particular is an open research question that is far from solved
[15]. Especially, a lot of work is done in evaluating the
quality of generated images from GANs. Current evaluation
still relies on human validation to judge if the generated
sample is good enough. However, evaluating and quantifying
the quality of generated continuous sequential data is even
harder for a human to do. Further, in our case we seldom
have more than one realisation from an underlying unknown
stochastic sensor model. Using only one sample makes it
difficult to draw any reasonable conclusions of the model
and its quality.

We evaluate our model by using a validation set including
around 2,000 sequences, each corresponding to unique traffic
scenarios. In order to evaluate if different parts of the signals,
such as large errors, are represented with the right density in
the generated samples, we use the Jensen-Shannon distance
(JSd) [16]. Further, we also use the root mean squared error

(RMSE) to assess the quality of generated sequences by the
model.

JSd is a smoother version of the Kullback-Leibler (KL)
divergence, which for two distributions P and Q is defined
as

K(P‖Q) =
∑
x

log

(
p(x)

q(x)

)
p(x). (13)

However, the KL divergence is not a true metric since it
does not fulfil the triangle inequality and since it is not
symmetric. Furthermore, it can yield infinite values when
P generates samples that have probability zero for the Q
distribution. Thus, we rely on the JSd, which is the square
root of the Jensen-Shannon divergence (JSD) and fulfils all
metric properties. Let M = 1

2 (P + Q). The JSD is then
defined as

J(P‖Q) =
1

2
K(P‖M) +

1

2
K(Q‖M). (14)

Given that one uses the base 2 logarithm, the JSd will range
from 0 to 1, with 0 meaning that P and Q are almost
surely identical distributions and 1 meaning that the two
distributions are disjoint.

With the RMSE capturing the temporal differences of the
time series and the JSd capturing the difference in distribu-
tions, we get a solid idea of how well the model performs. In
addition to this, we also take into account the JSd between
the first difference distributions of the validation set and the
generated samples, i.e. the distribution of xt − xt−1, which
gives us more understanding of the temporal aspects of the
model. In the end we also qualitatively evaluate the models
by performing visual inspection of the generated data.

V. RESULTS AND DISCUSSION

We randomly initialised and trained several different im-
proved RC-GANs on the same data set, and evaluated each
model using the JSd and the RMSE as well as performing
visual inspection.

In Figure 3, three different validation sequences together
with corresponding generated sequences from the best per-
forming model are visualised. These sequences were cho-
sen to illustrate different behaviour in the data and how
the trained model performs in these cases. The validation
sequence of the longitudinal position error is plotted with a
black line, while the mean of 100 generated sequences from
the best RC-GAN is plotted with a blue line. The filled blue
area is the 95th percentile of all generated sequences.

All trained models got a substantial initial transient for
all generated time series. By performing visual inspection
we see that other than the initial transient the generated
sequences behave similar to the real sequences. This transient
makes the RC-GAN behave poorly with generating first time
frames of the generated sequences as compared with the
real data, as seen in Figure 3. Furthermore the transient is
similar for many different time series which is an undesirable
trait since it does not reflect the real data. This issue mainly
stems from the LSTM nodes in the network whose internal
states have to be built up from consecutive inputs. When the

network has been fed enough time frames, they start to be
able to grasp the context of the sequences and the output
start to look more like the real sequences. Attempts to solve
the issue with the initial transient have been made by trying
different initialisation schemes, e.g. initialising the LSTMs
with noise from either uniform or normal distributions. This
does indeed cause the transient to behave differently both for
good and for bad. However, the main issue with this approach
is that the learning of the model in the GAN setting is slowed
down greatly and becomes even more unstable.

We also trained the generator network G using the mean
average error (MAE) as loss function instead of the GAN
training setting, i.e. without the discriminator. These two
models together with the AIO-HMM and the original RC-
GAN are compared in Table I. Figure 4 depicts the histogram
of the generated data and the real data. In Figure 4a, the
generated sensor error distribution is depicted in orange and
the distribution of the real sequences is depicted in blue. In
Figure 4b, the distributions of the first difference of both the
generated sequences and the real data are depicted.

Figure 4 and Table I show that the generated and real
data distributions are very similar with a JSd of 0.082 and
0.11 for the total distribution and for the first difference
distribution respectively. The results show that the RC-GAN
yields a 37% better result as compared to the AIO-HMM
for the JSd of the total distribution. For the JSd of the first
difference distribution we observe a 27% better performance
and a 25% lower RMSE for the RC-GAN as compared to the
AIO-HMM. By using consecutive non-linear transformations
and internal memory, the improved RC-GAN is able to learn
rich representations and model long-term dependencies better
than the other models. As compared to the original RC-GAN,
we note that we yield a large improvement with respect
to JSd and first difference JSd. This is mainly due to the
isolation of the noise to its own network and by adding
skip connections. With regards to RMSE, we perform a bit
worse. This can be explained by that that the original RC-
GAN is more unstable in its training, and predicts sequence
values close to the sequence mean. The improved RC-GAN
is however able to model fluctuations in the sequence.

TABLE I: Table showing metrics showing the results for the
AIO-HMM, Generator network G and the RC-GAN.

Model JSd 1st diff JSd RMSE
AIO-HMM 0.130 0.150 0.670
Original RC-GAN 0.337 0.527 0.448
G (MAE) 0.342 0.550 0.392
Our RC-GAN 0.082 0.110 0.503

(a)

(b)

(c)

Fig. 3: Sequences describing the longitudinal position error
for three different tracked objects from the validation set
(black) together with the mean (blue) and 95th percentile
(filled blue) of the 100 generated sequences from the RC-
GAN. The vertical axis has been re-scaled.

(a) Histogram of the sensor errors.

(b) Histogram of the first difference of the errors.

Fig. 4: Histogram of the sensor error for all sequences from
the validation set (blue) together with the histogram of the
generated sensor errors for all sequences (orange) from the
RC-GAN. The vertical axis shows a normalised frequency
and the horizontal axis has been re-scaled.

VI. CONCLUSIONS

In this paper, an improved Recurrent Conditional Genera-
tive Adversarial Network (RC-GAN) has been proposed for
the purpose of modelling continuous sequences describing
sensor outputs that are used in autonomous driving. The
RC-GAN is able to handle time series of arbitrary length.
Further, by separating the input noise and conditional input to
different networks, the model has the ability to tune the noise
levels to the specific data distribution that is wished to be
learned and generate more stable signals. As it is possible to

run the network on arbitrary long sequences it is also possible
to train the network on data sets containing sequences of
different lengths, which we do in this paper. The proposed
model learns the data distribution of time series with long-
term temporal dependencies similar to that shown in the real
data. In particular, we yield better results than those reported
in previous work by a great margin.

ACKNOWLEDGEMENT

The authors would like to thank Volvo Car Group for
providing the data used for this paper.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?,”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–
193, 2016.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[3] E. Listo Zec, N. Mohammadiha, and A. Schliep, “Statistical sensor
modelling for autonomous driving using autoregressive input-output
hmms,” in The 21st IEEE International Conference on Intelligent
Transportation Systems, 2018.

[4] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical)
time series generation with recurrent conditional gans,” arXiv preprint
arXiv:1706.02633, 2017.

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arXiv preprint,
2017.

[6] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single
image super-resolution using a generative adversarial network.,” in
CVPR, vol. 2, p. 4, 2017.

[7] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee,
“Learning what and where to draw,” in Advances in Neural Informa-
tion Processing Systems, pp. 217–225, 2016.

[8] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient.,” in AAAI, pp. 2852–2858, 2017.

[9] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with
adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

[10] H. Arnelid, “Sensor modelling with recurrent conditional gans,” Mas-
ter’s thesis, Chalmers University of Technology, 2018.

[11] C. Donahue, J. McAuley, and M. Puckette, “Synthesizing audio with
generative adversarial networks,” CoRR, vol. abs/1802.04208, 2018.

[12] J. Florbäck, L. Tornberg, and N. Mohammadiha, “Offline object
matching and evaluation process for verification of autonomous driv-
ing,” in Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on, pp. 107–112, IEEE, 2016.

[13] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning, pp. 1310–1318, 2013.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of
generative models,” arXiv preprint arXiv:1511.01844, 2015.

[16] J. Briët and P. Harremoës, “Properties of classical and quantum jensen-
shannon divergence,” Physical review A, vol. 79, no. 5, p. 052311,
2009.

